Reasoning and Problem Solving Step 20: Using Fractions as Operators

National Curriculum Objectives:

Mathematics Year 5: (5C8c) Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates

Differentiation:

Questions 1, 4 and 7 (Problem Solving)
Developing Find the missing unit fraction to complete the statements.
Expected Find the missing non-unit fraction to complete the statements.
Greater Depth Find the missing improper fraction to complete the statements.
Questions 2, 5 and 8 (Reasoning)
Developing Explain which statement is the odd one out. Includes unit fractions only. Expected Explain which statement is the odd one out. Includes non-unit fractions in their simplest form.
Greater Depth Explain which statement is the odd one out. Questions include non-unit fractions and improper fractions.

Questions 3, 6 and 9 (Reasoning)
Developing Identify the correct statement about fractions as operators and explain why. Includes unit fractions only.
Expected Identify the correct statement about fractions as operators and explain why. Includes non-unit fractions in their simplest form.
Greater Depth Identify the correct statement about fractions as operators and explain why. Questions include non-unit fractions and improper fractions.

More Year 5 Fractions resources.

Did you like this resource? Don't forget to review it on our website.

1a．The statements can be completed by using the same unit fraction．
Find the missing fraction．

8

2a．Circle the odd one out．
A．$\frac{1}{2}$ of 16
B． 8

C． $16 \times \frac{1}{2}$
D． 4
Explain your reasoning．
号
3a．Danny and Sarah are using fractions as operators．

Danny says，

$$
12 \text { lots of } \frac{1}{3}=\frac{1}{3} \text { of } 12
$$

1b．The statements can be completed by using the same unit fraction．
Find the missing fraction．

$$
\begin{aligned}
& 15 \times \frac{\square}{\square}=\frac{\square}{\square} \text { of } 15=5 \\
& 9 \times \frac{\square}{\square}=\frac{\square}{\square} \text { of } 9=3
\end{aligned}
$$

A．$\frac{1}{4}$ of 20

B． 4
C． $20 \times \frac{1}{4}$

D． 5
Explain your reasoning．

同

3b．Jake and Kiran are using fractions as operators．

Jake says，

Who is correct？Convince me．
靣

4a. The statements can be completed by using the same non-unit fraction.
Find the missing fraction.

5a. Circle the odd one out.
A. 10
B. $14 \times \frac{5}{7}$
C. 7
D. $\frac{5}{7}$ of 14

Explain your reasoning.

6a. Scott and Anya are using fractions as operators.

Scott says,

$$
\frac{3}{5} \text { of } 10=10 \text { lots of } 3 \times 5
$$

Anya says,

Who is correct? Convince me.

7a. The statements can be completed by using the same improper fraction. Find the missing improper fraction.
$15 \times \frac{\square}{\square}=\frac{\square}{\square}$ of $15=\frac{60}{3}=20$

24

$$
\times \frac{\square}{\square}=\frac{\square}{\square} \text { of } 24=\frac{96}{3}=32
$$

8a. Circle the odd one out.
A. $\frac{7}{5}$ of 15
B. 28
C. $15 \times \frac{7}{5}$
D. 21

Explain your reasoning.

7b. The statements can be completed by using the same improper fraction. Find the missing improper fraction.
$20 \times \frac{\square}{\square}=\frac{\square}{\square}$ of $20=\frac{100}{4}=25$
$8 \times \frac{\square}{\square}=\frac{\square}{\square}$ of $8=\frac{40}{4}=10$
A. 44
B. $\frac{5}{2}$ of 22
C. $22 \times \frac{5}{2}$
D. 55

Explain your reasoning.

9b. Luke and Freya are using fractions as operators.

Luke says,

$$
24 \text { lots of } \frac{5}{3}=\frac{5}{3} \text { of } 24
$$

Freya says,

Who is correct? Convince me.

9a. Alfie and Tasmin are using fractions as operators.

Alfie says,

$$
\frac{6}{4} \text { of } 16=16 \text { lots of } 6 \times 4
$$

\angle
$16 \times \frac{6}{4}=\frac{6}{4}$ of 16
Tasmin says,

$$
\frac{5}{3} \text { of } 24=24 \times \frac{5}{3}
$$

Who is correct? Convince me.

Reasoning and Problem Solving Using Fractions as Operators

Reasoning and Problem Solving Using Fractions as Operators

Developing

1a. $\frac{1}{4}$
2a. D is the odd one out because A and $C=B$.

3a. Various answers, for example: Danny is correct because he has used commutativity. Sarah is incorrect because 12 needs to be divided by 3 rather than multiplied.

Expected

4a. $\frac{3}{4}$
$5 a$. C is the odd one out because B and D = A.

6a. Various answers, for example: Scott is correct because he has used commutativity. Anya is incorrect because 10 lots of $3 \times 5=150$ where as $\frac{3}{5}$ of $10=6$.

Greater Depth

7a. $\frac{4}{3}$
8 a . B is the odd one out because A and $\mathrm{C}=\mathrm{D}$.

9a. Various answers, for example: Tasmin is correct because she has used commutativity. Alfie is incorrect because he should have done 16 lots of $\frac{6}{4}$ instead of 16 lots of 6×4.

Developing

1b. $\frac{1}{3}$
2b. B is the odd one out because A and $\mathrm{C}=\mathrm{D}$.

3b. Various answers, for example: Kiran is correct because she has used commutativity. Jake is incorrect because 14 needs to be divided by 2 rather than multiplied.

Expected

4b. $\frac{2}{3}$
5b. B is the odd one out because A and
$\mathrm{C}=\mathrm{D}$.
6b. Various answers, for example: Lily is correct because she has used commutativity. Mo is incorrect because he should do 12 lots of three quarters instead of 12 lots of three.

Greater Depth

7b. $\frac{5}{4}$
$\mathbf{8 b}$. A is the odd one out because B and $\mathrm{C}=\mathrm{D}$.

9b. Various answers, for example: Luke and Freya are correct. They have both used commutativity. 'Lots of' means the same as multiplying.

