Calculation Policy

STUART ROAD PRIMARY ACADEMY

Objective and Strategies	Concrete	Pictorial	Abstract
Addition Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar. Then recount all using one-toone correspondence.		$4+3=7$ Use the partpart whole diagram as shown above to move into the abstract. $\begin{aligned} & 10=6+4 \\ & 10-6=4 \\ & 10-4=6 \\ & 10=4+6 \end{aligned}$

Images and ideas drawn from Mathematics Masters and White Rose Maths

Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number I by I to find the answer．	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer．	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer．

Make Ten Strategy	$6+5=11$ Start with the bigger number and use the smaller number to make 10 .	Use pictures or a number line. Regroup or partition the smaller number to make 10. $9+5=14$ $17+6=23$ (3) 3 $38+15=$	$7+4=11$ If I am at seven, how many more do I need to make IO? And how many more do I add on?

Images and ideas drawn from Mathematics Masters and White Rose Maths

Regrouping (exchanging) to make 10.	The colours of the beads on the bead string make it clear how many more need to be added to make ten.	$3+9=$	NA (This is an essential concrete/pictorial skill that will support the make ten strategy and column addition.)

Images and ideas drawn from Mathematics Masters and White Rose Maths

Adding three single digit numbers.	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. The first bead string shows 4, 7 and 6. The colours of the bead string show that it makes more than ten. The second bead string shows 4, 6 and then 7. The final bead string shows how they have now been put together to find the total.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \underbrace{(4)+7+6}_{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

Partitioning one number, then adding tens and ones.	Pupils can choose themselves which of the numbers they wish to partition. Pupils will begin to see when this method is more efficient than adding tens and taking away the extra ones, as shown.	$22+17=39$	$22+17=39$ Counting up in head: $22,32,39$
Partitioning one number then counting 'on'.	Partition with cubes, dienes, bead string, counters, place value counters.	Pupils should be exposed to situations where they build an understanding of the fact that changing the oxder in which the parts are added or subtracted does not change the result.	Partitioning a number in their heads e,g, 1359 Ithowsand 3hundreds five tens nine anes

Images and ideas drawn from Mathematics Masters and White Rose Maths

Images and ideas drawn from Mathematics Masters and White Rose Maths

Images and ideas drawn from Mathematics Masters and White Rose Maths

Images and ideas drawn from Mathematics Masters and White Rose Maths

Images and ideas drawn from Mathematics Masters and White Rose Maths

Count forwards or backwards in steps of powers of 10 for any given number up to 000000 (including tenths and hundredths - y6) In Year 4, pupils use place value knowledge to mentally add and subtract multiples of 10,100 and 1000 for numbers up 10000 In Year 5 this is extended to numbers up to $/$ 000000. In Year 6 this is extended numbers up to 10000 000.	Place value grid with counters. Pay particular attention to boundaries where regrouping happens more than once. E.g. $\begin{aligned} & 9900+100=10000 \\ & 99900+100=100000 \\ & 99000+1000=100000 \end{aligned}$	counting stick $$	numberline

Images and ideas drawn from Mathematics Masters and White Rose Maths

Objective and Strategies	Concrete	Pictorial	Abstract
Subtraction Taking away ones When this is first introduced, the concrete representation should be based upon the diagram. Real objects should be placed on top of the images as one-toone correspondence, progressing to representing the group of ten with a tens rod and ones with ones cubes.	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$

Images and ideas drawn from Mathematics Masters and White Rose Maths

Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. $13-4$ Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Images and ideas drawn from Mathematics Masters and White Rose Maths

Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Draw bars to find the difference between 2 numbers. Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. Instead of subtracting or taking away, subtraction can be thought of as finding the difference between two values. Place the numbers either end of a numberline and work out the difference between them	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.

		This can be known as counting 'on' ox 'back'	

[^0]| Part Part
 Whole Model | Link to addition- use the part whole model to help explain the inverse
 between addition and subtraction.
 If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$ | Use a pictorial representation of abjects to show the partpart-whole model. | 5
 10
 Move to using numbers within the part whole madel. |
| :---: | :---: | :---: | :---: |
| Make 10 | $14-9=$ anale alaga \square
 Make 14 on the ten frame. Take away the four first to make 10 and then | Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altagether. You have reached your answer. | \|6-8=
 How many do we take off to reach the next 10? |

Images and ideas drawn from Mathematics Masters and White Rose Maths

	takeaway one more so you have taken away 5. You are left with the answer of 9.			How many do we have left to take off?
Subtracting tens and adding extra ones. Pupils must be taught to round the number that is being subtracted. Pupils will develop a	$53-17=36$		53	$53-17=36$ Round 17 to 20. $\begin{aligned} & 53-20=33 \\ & 20-17=3 \end{aligned}$ (number bonds)

Images and ideas drawn from Mathematics Masters and White Rose Maths

sense of efficiency with this method, beginning to identify when this method is more efficient than subtracting tens and then ones.		$53-17=36$	$33+3=36$ (we add because we took an extra 3 away when we subtracted 20 instead of 17).
Subtracting Multiples of Ten	Using the vocabulary of 1 ten, 2 tens, 3 tens etc. alongside 10, 20, 30 is important as pupils need to understand that it is a ten not a one that is being taken away.	5 tens - 2 tens $=$ \qquad ters $50-20=$ \qquad	$32-10=22$ Look at the number of tens in the largest number. Count back in tens to subtract the smaller number. 30, 20. Add on the number of ones that we oxiginally had. $=22$

[^1]| Counting back in multiples of ten and one hundred. | Removing one group of 10 each time. | | Counting back in 10s or 100 s from any starting point.
 $53,43,33 \ldots$ $540,440,340 \ldots$ |
| :---: | :---: | :---: | :---: |
| Take away | | Parts are place value amounts (canonical partitioning)
 Pupils should understand that the parts can be subtracted in any oxder.
 Parts are not place value amounts (non canonical partitioning)
 Make ten, make hundred, make thousand, make one | |

Images and ideas drawn from Mathematics Masters and White Rose Maths

		Highlight that the calculation can be done in another order. $8=68051+8$	70 is 10 more than 60 so we need to add 10 more. So the answer is 130

Images and ideas drawn from Mathematics Masters and White Rose Maths

Column method without regrouping (exchanging)	Use Base 10 to make the bigger number then take the smaller number away. Show haw you partition numbers to subtract. Again make the larger number first.	\odot \odot 0 \odot \odot 00	$\frac{-54}{-22}$	Draw the Base 10 ar place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction. $\begin{array}{r} 32 \\ -12 \\ \hline 20 \end{array}$

Images and ideas drawn from Mathematics Masters and White Rose Maths

Column method with regrouping (exchanging) $34-17=17$	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones. Now I can subtract my ones.	 Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Children can start their formal written method by partitioning the number into clear place value columns. Mosing forward the children use a more compact method. This will lead to an understanding of subtracting any number including decimals.

Images and ideas drawn from Mathematics Masters and White Rose Maths

Images and ideas drawn from Mathematics Masters and White Rose Maths

Subtraction using compensation, rounding and adjustment	$54128+9987=54128+10000-$ $13=64128-13$ Highlight that the calculation can be done in another oxder. $78051-9992=78051-10$ $000+8=68051+8$	Using near doubles. E.g. $140-60=$ $140-70=70$ 70 is 10 mare than 60 so we need to add 10 more.

Images and ideas drawn from Mathematics Masters and White Rose Maths

Multiplication Doubling and halving	Use practical activities to show how to Cuisenaire rods	Draw pictures to show how to double a number. Double 4 is 8	 Partition a number and then domble each part before recombining it back tagether.

Images and ideas drawn from Mathematics Masters and White Rose Maths

Counting in multiples	Count in multiples supported by concrete abjects in equal groups.		Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25 \\ & 30 \end{aligned}$

Images and ideas drawn from Mathematics Masters and White Rose Maths

Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles. $12=3 \times 4$ $12=4 \times 3$	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 00000 \\ & 00000 \\ & 00000 \end{aligned}$ $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Images and ideas drawn from Mathematics Masters and White Rose Maths

Bar Modelling	Cuisinaire rods can be used to create bars to represent multiplications. $4 \times 2=8$ $5 \times 3=15$	There are 4 bags of sweets with 3 sweets in each bag. How many sweets are there altogether? There are 3 school bags with 5 books in each one. How many books are there altogether?	6
Doubling to derive new multiplication facts Pupils learn that known facts from easier times tables can be used to derive facts from related times tables using doubling as a strategy.	$\begin{aligned} & 5=2 \\ & 5 \times 4=20 \quad 10 \times 4=40 \end{aligned}$		I know $4 \times 6=24$ So, $4 \times 12=48$ And 8×6 also $=$ 48

Images and ideas drawn from Mathematics Masters and White Rose Maths

[^2]| Ten times |
| :--- | :--- | :--- |
| bigger |
| Pupils's work on |
| this must be |
| firmly based on |
| concrete |
| representations - |
| the language of |
| ten times bigger |
| must be well |
| modelled and |
| understood to |
| prevent the |
| numerical |
| misconception of |
| adding 0'. |$\quad 4 \times 3=12,$| Possible |
| :--- |
| misconcetion: move |
| the deimal point. |

								children understand the concept of this through the use of using concrete and pictorial resources.
Multiplying by 10, 100 and 1000	$\begin{aligned} & 5 \times 1=5 \\ & 5 \times 10=50 \\ & =8=\quad 3 \times 1=3 \\ & 3 \times 100=300 \end{aligned}$	10	100	$\underbrace{100}_{600}$	100	100	100	

Images and ideas drawn from Mathematics Masters and White Rose Maths

Images and ideas drawn from Mathematics Masters and White Rose Maths

Grid Method	Show the link with arrays to first introduce the grid method. rows of 104 rows of 3 Move on to using Base 10 to move towards a more compact method. 4 rows of 13 Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.	Children can represent the work they have done with place value counters in a way that they understand. They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$ Moving forward, multiply by a 2 digit number showing the different xows within the grid method.

Images and ideas drawn from Mathematics Masters and White Rose Maths

[^3]| Short multiplication | It is important at this stage that children always multiply the ones first and note down their answer followed by the tens which they note below. | Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods. $\begin{aligned} & 8 \times 59 \\ & =8 \times 60-8 \\ & 8 \times 6=48 \\ & 8 \times 60=480 \\ & 480-8=472 \end{aligned}$ | Start with long multiplication, reminding the children about lining up their numbers clearly in columns.
 If it helps, children can write out what they are solving next to their answer. $\begin{aligned} 32 & \\ \times 24 & \\ \hline 8 & (4 \times 2) \\ 120 & (4 \times 30) \\ 40 & (20 \times 2) \\ \frac{600}{768} & (20 \times 30) \end{aligned}$ |
| :---: | :---: | :---: | :---: |

National Curxiculum appendix:

Long multiplication

24×16 becomes	124×26 becomes	124×26 becomes		
2	12	1	,	
24	124	1	2	4
+ 16	$\times 26$	\times	2	6
240	2488	7	4	4
1444	$\begin{array}{lll}7 & 4 & 4\end{array}$	24	8	0
3884	$\begin{array}{llll}3 & 2 & 2 & 4\end{array}$	32	2	4
	11	11		
Answer: 384	Answer: 3224	Answ	er:	3224

Images and ideas drawn from Mathematics Masters and White Rose Maths

| Objective and
 Strategies | Concrete | Abstract |
| :--- | :--- | :--- | :--- |
| Division | | |
| Sharing | | |
| abjects | | |
| into | | |
| groups | | |

Images and ideas drawn from Mathematics Masters and White Rose Maths

$\left.$	Dividing multiples of 10,100	
and 1000		
by 10,100		
and 1000.	$200 \div 100=2$	$\quad \right\rvert\,$
:---		
I know there are		
five groups of 200		
in 1000 and I have		
six 1000 s and 5 x		
$6=$		
$30 . "$		

Images and ideas drawn from Mathematics Masters and White Rose Maths

Images and ideas drawn from Mathematics Masters and White Rose Maths

Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{cl} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

Division with a remainder	$14 \div 3=$ Divide abjects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. $\stackrel{\bullet}{\text { remandaer 2 }}$	Complete written divisions and show the remainder using x.

Images and ideas drawn from Mathematics Masters and White Rose Maths

you have to regroup. How many 4s in 500? 100 with 1 remaining (illogical) The answer would be 125 Sharing the dividend builds conceptual understanding however doesn't scaffold the "thinking" of the algorithm. Using place value counters and finding groups of the divisor for each power of ten will build conceptual understanding of the compact short division algorithm.	We exchange this ten for ten ones and then share the ones equally among the groups. We look how much there is in 1 group; the answer is 14 .

	Share 8528 into 4 equal groups. 8 thousands shared into 4 equal groups 5 hundreds shared into 4 equal groups Regroup/ 1 hundred for 10 tens 12 tens shared into 4 equal groups 8 ones shared into 4 equal groups Grouping How many groups of 4 in 8528 ? How many groups of 4 thousands in 8 thousands? How many groups of 4 hundreds in 5 hundreds? Regroup 1 hundred for 10 tens How many groups of 4 tens in 12 tens? How many groups of 4 ones in 8 ones?	Written version of a mental strategy for 3 -digit $\div 1$ digit numbers Short division of 3 -digit and 4 -digit numbers by single-digit numbers $\begin{array}{r} 1264 \\ 6 \longdiv { 7 ^ { 1 } 5 ^ { 3 } 8 ^ { 2 } 4 } \end{array}$	$\begin{aligned} & \square \times 6=326 \\ & 50 \times 6=\frac{300}{26} \\ & 4 \times 6=\frac{24}{2} \\ & 54 \mathrm{r} 2 \end{aligned}$	$326 \div 6=54 r 2$	

[^4]| Long Division | The short division method can be applied for 11 and 12 using times tables knowledge. Factors shoul dbe used to break down the calculation and apply the short division method. If the divisor is a print number see opposite. | $\begin{array}{r} 212 \\ 13 \begin{array}{l} 2756 \\ \frac{26}{15} \\ \\ \frac{13}{26} \\ \frac{26}{0} \end{array} \end{array}$ | |
| :---: | :---: | :---: | :---: |

National Curriculum appendix:

Short division

$98 \div 7$ becomes	$432 \div 5$ becomes				$496 \div 11$ becomes					
14				6				4	5	r1
$79^{2} 8$	5	4	3	2			4	9	6	
Answer: 14	Answer: 86 remainder 2				Answer: $45 \frac{1}{11}$					

Long division

$432 \div 15$ becomes

1 | | | | 2 | 8 |
| :--- | :--- | :--- | :--- | :--- |
| | 5 | r 12 | | |
| 4 | 3 | 2 | | |
| 3 | 0 | 0 | | |
| | | 1 | 3 | 2 |
| | 1 | 2 | 0 | |
| | | 1 | 2 | |

$432 \div 15$ becomes

			2	8
	5	4	3	2

$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	15×20
$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$	
	$\mathbf{1}$	$\mathbf{2}$	

$\frac{12}{15}=\frac{4}{5}$
$432 \div 15$ becomes

[^0]: Images and ideas drawn from Mathematics Masters and White Rose Maths

[^1]: Images and ideas drawn from Mathematics Masters and White Rose Maths

[^2]: Images and ideas drawn from Mathematics Masters and White Rose Maths

[^3]: Images and ideas drawn from Mathematics Masters and White Rose Maths

[^4]: Images and ideas drawn from Mathematics Masters and White Rose Maths

